3.4. Determinants
For a square n xn matrix A , the determinant is denoted in a few different
ways:
(3.57) \[\begin{equation}
\det \vv{A} =|\vv{A}|=\begin{vmatrix}
A_{11} & \cdots & A_{1n} \\
\vdots & & \vdots \\
A_{n1} & \cdots & A_{nn}
\end{vmatrix}
\end{equation}\]
The determinant is defined in a recursive way.For \(n=1\) , \(|\vv{A}|= A_{11}\)
( the matrix element)
For \(n \ge 2\) , \(|\vv{A}|\) is defined as:
(3.58) \[\begin{equation}
|\vv{A}|= \sum_{j=1}^n A_{ij} C_{ij} = \sum_{j=1}^n (-1)^{i+j} A_{ij} M_{ij}
\end{equation}\]
where i is any row of A , \(C_{ij}\) is the cofactor of A :
(3.59) \[\begin{equation}
C_{ij} = (-1)^{i+j} M_{ij},
\end{equation}\]
and \(M_{ij}\) is the minor of A . The minor is the determinant of the matrix
obtained by removing row i and column j from A . Equivalently,
(3.60) \[\begin{equation}
|\vv{A}| = \sum_{i=1}^n A_{ij} C_{ij} = \sum_{i=1}^n (-1)^{i+j} A_{ij} M_{ij}
\end{equation}\]
where now j is any column of A .
3.4.1. 2x2 matrix
2x2 determinant
The determinant of a 2x2 matrix is:
(3.61) \[\begin{equation}
\begin{vmatrix}a & b \\ c & d\end{vmatrix} = a d - bc
\end{equation}\]
We will use the definition of the determinant to show this must be the case!
Let’s use the first definition and pick the first row \(i=1\) :
(3.62) \[\begin{align}
\begin{vmatrix}a & b \\ c & d\end{vmatrix}
&= (-1)^{1+1} \cdot A_{11} M_{11} + (-1)^{1+2} A_{12} M_{12} \\
&= a \begin{vmatrix} \phantom{a} & \phantom{b} \\ \phantom{c} & d \end{vmatrix} -
b \begin{vmatrix} \phantom{a} & \phantom{b} \\ c & \phantom{d} \end{vmatrix} \\
&= a d - b c
\end{align}\]
3.4.2. Larger matrices
The determinants of larger matrices can be computed by reducing them to sums
of 2x2 determinants. To do this quickly, it can be helpful to envision
\((-1)^{i+j}\) as a checkerboard of signs, then visualize the minors.
For example, to evaluate
(3.63) \[\begin{equation}
\begin{vmatrix}1 & 3 & 0 \\ 2 & 6 & 4 \\ -1 & 0 & 2 \end{vmatrix}
\end{equation}\]
The sign matrix is:
(3.64) \[\begin{equation}
\begin{bmatrix}+ & - & + \\ - & + & - \\ + & - & + \end{bmatrix}
\end{equation}\]
Even faster, start from the plus sign in the upper left corner, then alternate
until you get to your chosen row or column! Let’s use row 3:
(3.65) \[\begin{align}
|\vv{A}| &= + (-1) \cdot \begin{vmatrix} 3 & 0 \\ 6 & 4 \end{vmatrix} -
0 \cdot \begin{vmatrix}1 & 0 \\ 2 & 4 \end{vmatrix} +
2 \cdot \begin{vmatrix}1 & 3 \\ 2 & 6 \end{vmatrix} \\
&= -(3 \cdot 4 - 0 \cdot 6) + 2(1 \cdot 6 - 2 \cdot 3) \\
&= -12
\end{align}\]
Note that the same result could be achieved using any row or column. For
example, column 3 gives:
(3.66) \[\begin{align}
|\vv{A}|&= +(0) \cdot \begin{vmatrix}2 & 6 \\ -1 & 0 \end{vmatrix} -
4 \cdot \begin{vmatrix}1 & 3 \\ -1 & 0 \end{vmatrix} +
2 \cdot \begin{vmatrix}1 & 3 \\ 2 & 6 \end{vmatrix} \\
&= -4 \cdot (0+3) + 2 \cdot (6-6)\\
&= -12
\end{align}\]
It’s usually a good idea to expand along the row or column with the most zeros!
For example, let’s evaluate
(3.67) \[\begin{align}
\begin{vmatrix}1 & -2 & 0 & 0 \\ 4 & 3 & 5 & 0 \\ 0 &2 & 7 & 5 \\ 0 & 0 & 2 & 0 \end{vmatrix}
&= -2 \cdot \begin{vmatrix}1 & -2 & 0 \\ 4 & 3 & 0 \\ 0 &2 & 5 \end{vmatrix} \\
&= -2 \cdot 5 \cdot \begin{vmatrix}1 & -2 \\ 4 & 3 \end{vmatrix} \\
&= -10 \cdot (3+8) \\
&= -110
\end{align}\]
where we chose row 4, then column 3 to do the calculation faster!