Integration using substitution

1.7. Integration using substitution#

When we know an integral

(1.35)#\[\begin{equation} \int e^x \d{x} = e^x + c \end{equation}\]

we can evaluate related integrals like:

(1.36)#\[\begin{equation} \int e^{-x} \d{x} = -e^{-x} + c \end{equation}\]

by making a substitution. Specifically, we define a new variable u, calculate its differential, and then replace both. For example, in this case, let \(u = -x\). Then, \(\d{u} = -\d{x}\). Equivalently, \(x = -u\) and \(\d{x} = -\d{u}\) so

(1.37)#\[\begin{equation} \int e^{-x} \d{x} = -\int e^u \d{u} = -e^u + c = -e^{-x} + c \end{equation}\]

Example: u-substitution

Evaluate the integral

(1.38)#\[\begin{equation} \int x e^{x^2} \d{x} \end{equation}\]

Let \(u=x^2\) so \(\d{u} = 2x \d{x}\). Then,

(1.39)#\[\begin{align} \int e^{x^2} x\d{x} = \int e^u \cdot \frac{1}{2}\d{u} = \frac{1}{2} e^u + c \end{align}\]

Plugging u back in gives the final answer:

(1.40)#\[\begin{equation} \int xe^{x^2} \d{x} = \frac{1}{2}e^{x^2} + c \end{equation}\]