1.8. Integration by parts
Integrals like
(1.41) \[\begin{equation}
\int x e^{-6 x} \d{x}
\end{equation}\]
are not solvable by substitution , but they look
like they are related closely enough that you may be able to! What to do here?
Recall the product rule for two functions u and v ,
then integrate:
(1.42) \[\begin{align}
(uv)' &= uv' + v u' \\
uv &= \int u \d{v} + \int v \d{u}
\end{align}\]
Rearranging gives the familiar form:
Integration by parts
(1.43) \[\begin{equation}
\int u \d{v} = uv - \int v \d{u}
\end{equation}\]
To apply this technique, identify a u and a \(\d{v}\) . Differentiate \(u\) and
integrate \(\d{v}\) , then apply the formula.
Let’s try this for the integral above with
(1.44) \[\begin{align}
u &= x & \d{v} &= e^{-6x} \d{x} \\
\d{u} &= \d{x} & v &= -\frac{e^{-6x}}{6}
\end{align}\]
so
(1.45) \[\begin{align}
\int x e^{-6x} \d{x}
&= x\frac{-e^{-6x}}{6} - \int\frac{-1}{6} e^{-6x} \d{x} \\
&= -\frac{xe^{-6x}}{6} + \frac{1}{6} \int e^{-6x} \d{x} \\
&= -\frac{xe^{-6x}}{6} - \frac{e^{-6x}}{36} + c
\end{align}\]
1.8.1. Choosing parts
The heart of the technique is making a suitable choice for u and \(\d{v}\) .
The acronym L.I.A.T.E. can help make this choice:
Example: Integration by parts 1
Evaluate
(1.46) \[\begin{equation}
\int(3x+5)\cos\left(\frac{x}{4}\right) \d{x}
\end{equation}\]
Let
(1.47) \[\begin{align}
u &= 3x+5 & \d{v} &= \cos\left(\frac{x}{4}\right) \d{x} \\
\d{u} &= 3 \d{x} & v &= 4\sin\left(\frac{x}{4}\right)
\end{align}\]
so:
(1.48) \[\begin{align}
\int(3x+5)\cos\left(\frac{x}{4}\right) \d{x}
&= (3x+5)\left[4\sin\left(\frac{x}{4}\right)\right]
- \int 4 \sin \left(\frac{x}{4}\right) 3 \d{x} \\
&= (12x+20) \sin\left(\frac{x}{4}\right)
- 12\int\sin\left(\frac{x}{4}\right) \d{x} \\
&= (12x+20) \sin\left(\frac{x}{4}\right) + 48\cos\left(\frac{x}{4}\right) + c
\end{align}\]
Example: Integration by parts 2
Evaluate
(1.49) \[\begin{equation}
\int \ln x \d{x}
\end{equation}\]
Let
(1.50) \[\begin{align}
u &= \ln x & \d{v} &= \d{x} \\
\d{u} &= \frac{1}{x} \d{x} & v &= x
\end{align}\]
so:
(1.51) \[\begin{align}
\int \ln x \d{x} &= x \ln x - \int\frac{1}{x} x \d{x} \\
&= x \ln x - \int \d{x} \\
&= x \ln x - x + c \\
\end{align}\]
Example: Integration by parts 3
Evaluate
(1.52) \[\begin{equation}
\int x^5 \sqrt{x^3+1} \d{x}
\end{equation}\]
Let
(1.53) \[\begin{align}
u &= x^3 & \d{v} &= x^2\sqrt{x^3+1} \d{x} \\
\d{u} &= 3x^2 \d{x} & v &= \frac{2}{9}(x^3+1)^{3/2}
\end{align}\]
so:
(1.54) \[\begin{align}
\int(x^5)(\sqrt(x^3+1))dx
&= x^3\frac{2}{9}(x^3+1)^{3/2}
- \int\left[\frac{2}{9}(x^3+1)^{3/2}\right]3x^2dx \\
&= \frac{2}{9}x^3(x^3+1)^{3/2}
- \frac{2}{9}\cdot\frac{2}{5}(x^3+1)^{5/2} + c \\
&= \frac{2}{9}x^3(x^3+1)^{3/2} - \frac{4}{45}(x^3+1)^{5/2} + c
\end{align}\]
1.8.2. Tabular method
To integrate
(1.55) \[\begin{equation}
\int x^4 e^{x/2} \d{x}
\end{equation}\]
by parts, let
(1.56) \[\begin{align}
u &= x^4 & \d{v} &= e^{x/2} \\
\d{u} &= 4x^3 \d{x} & v &= 2e^{x/2}
\end{align}\]
which allows:
(1.57) \[\begin{equation}
\int x^4e^{x/2} \d{x} = 2 x^4 e^{x/2} - \int 8 x^3 e^{x/2} \d{x}
\end{equation}\]
We will need to integrate by parts again, and again, and again… but there is
a shortcut! Make a staggered table. Differentiate u repeatedly until you get
a 0 in the last row. Then, integrate \(\d{v}\) repeatedly until you reach the
last nonzero row for u . Multiply across rows using opposite signs.
The result is:
(1.58) \[\begin{align}
\int x^4 e^{x/2} \d{x} &= x^4 (2e^{x/2}) - 4x^3 (4e^{x/2}) \\
&+ 12x^2 (8e^{x/2}) - 24x (16e^{x/2}) + 24 (32e^{x/2}) \\
&= (2x^4 - 16x^3 + 96x^2 - 384x + 768) e^{x/2}
\end{align}\]