2.3. Manipulating Partial Derivatives#
We sometimes need to find derivatives we don’t obtain easily from one of these potentials. For this, we use some calculus rules.
2.3.1. Inversion#
If x(y, z) and y(x, z), then:
\[\left( \frac{\partial x}{\partial y} \right)_z = \frac{1}{\left( \frac{\partial y}{\partial x} \right)_z}\]
Example:
\[Let:
x = \frac{y^2}{z}\]
We can rearrange this to:
\[y = \pm \sqrt{xz}\]
Now compute:
\[\left( \frac{\partial x}{\partial y} \right)_z = \frac{2y}{z}\]
Then:
\[\left( \frac{\partial y}{\partial x} \right)_z = \frac{z}{2y}\]
And confirm the inversion:
\[\frac{1}{\left( \frac{\partial y}{\partial x} \right)_z} = \frac{2y}{z}\]
2.3.2. Chain Rule#
\[\left( \frac{\partial x}{\partial y} \right)_z = \left( \frac{\partial x}{\partial w} \right)_z \left( \frac{\partial w}{\partial y} \right)_z\]
Example:
\[ w = yz \]
So,
\[y = \frac{w}{z}\]
Then:
\[x = \frac{(w/z)^2}{z} = \frac{w^2}{z^3}\]
Now compute:
\[\left( \frac{\partial x}{\partial w} \right)_z = \frac{2w}{z^3}\]
And:
\[\left( \frac{\partial w}{\partial y} \right)_z = z\]
Therefore:
\[\left( \frac{\partial x}{\partial y} \right)_z = \frac{2w}{z^3} \cdot z = \frac{2w}{z^2} = \frac{2yz}{z^2} = \frac{2y}{z}\]